Diaľkové UV LED svetlá účinne ničia baktérie a vírusy bez toho, aby poškodili ľudí

Obrázok 1: Väčšina LED diód vyžaruje viditeľné svetlo, ale fyzici RIKEN vytvorili LED, ktorá vyžaruje v úzkej oblasti vzdialené ultrafialové lúče a je bezpečná pre ľudí, ale smrteľná pre vírusy a baktérie. kredit: RIKEN

Výkonná LED lampa dokáže efektívne dezinfikovať povrchy a zároveň udržať ľudí v bezpečí.

Fyzici RIKEN navrhli vysoko účinnú LED lampu, ktorá je antimikrobiálna a antivírusová, ale bezpečná pre ľudí. Jedného dňa by to mohlo pomôcť krajinám vymaniť sa z tieňa epidémií zabíjaním patogénov v miestnostiach plných ľudí.

Ultrafialové germicídne lampy sú vysoko účinné pri ničení baktérií a vírusov. V skutočnosti sa bežne používajú v nemocniciach na sterilizáciu lekárskych povrchov a nástrojov.

Masafumi jo

Masafumi Jo a dvaja spolupracovníci navrhli LED lampu, ktorá pomáha chrániť spoločnosť pred epidémiami. kredit: RIKEN

Svietidlá tohto typu môžu byť vytvorené pomocou LED diód, vďaka čomu sú energeticky efektívne. Tieto LED svetlá však produkujú ultrafialové svetlo v rozsahu, ktorý je škodlivý[{“ attribute=““>DNA and therefore cannot be used around people. The search is on to develop efficient LEDs that shine light within a narrow band of far-ultraviolet light that appears to be both good at disinfecting while remaining safe for people.

Germicidal LED lamps that operate in the absence of humans are often made from aluminum, gallium, and nitrogen. By increasing the amount of aluminum they contain, these LEDs can be modified to work in a wavelength region that is safe for humans. This approach has been used before but has resulted in dramatically reduced power.

To work through this issue, three physicists at RIKEN Quantum Optodevice Laboratory, Masafumi Jo, Yuri Itokazu, and Hideki Hirayama, created an LED with a more complex design. They sandwiched together multiple layers, each containing slightly different proportions of aluminum. In addition, in some layers they also added tiny amounts of silicon or magnesium.

This effectively created an obstacle course for electrons, hindering their movement across the material and trapping them for longer in certain areas. This resulted in an increased amount of light emitted by the device and a reduced amount absorbed by it.

The team used computer simulations to model all possible effects to help pin down the ideal design. “We then grew samples to see if it was effective or not,” Jo says. Precisely controlling the thickness of each layer was the biggest experimental challenge. They ended up with an LED operating in the far ultraviolet, with an output power almost ten times higher than their previous best.

The COVID-19 pandemic brought a new consciousness of the importance of being able to eradicate viruses and microbes on surfaces. “We trust that our findings and technologies will be very useful for safeguarding society against this and future pandemics,” says Jo.

Jo adds that the trio will strive to improve their LED’s performance even further. “There’s still much room for improvement in the output power and the power efficiency,” he notes.

Reference: “Milliwatt-power far-UVC AlGaN LEDs on sapphire substrates” by Masafumi Jo, Yuri Itokazu and Hideki Hirayama, 25 May 2022, Applied Physics Letters.
DOI: 10.1063/5.0088454

READ  Prípady COVID-19 v Austrálii vytvorili nový rekord, pretože zúria diskusie o „znovuotvorení“

Pridaj komentár

Vaša e-mailová adresa nebude zverejnená. Vyžadované polia sú označené *